
ATS &

ÉLECTROSTATIQUE: EXTRAIT

E1. ÉLECTROSTATIQUE DU VIDE - §

◊ principe de superposition

 $1^{
m e}$ situation charge q_1 placée en ${
m P_1}$ agissant sur charge d'épreuve q placée en M

 \Rightarrow force \overrightarrow{f}_1

charge q_2 placée en P_2 agissant sur charge d'épreuve q placée en M

 \Rightarrow force \overrightarrow{f}_2

 $3^{\rm e}$ situation, avec 2 charges-sources : charges q_1 et q_2 placées en P_1 et P_2 agissant sur charge d'épreuve q placée en $M \Rightarrow$ force $\vec{f} = \vec{f_1} + \vec{f_2}$

◊ de la force au champ : introduction du champ électrostatique

L'idée est de remplacer : « La charge d'épreuve subit à distance des actions exercées par des charges-sources »

par : « 1°/ Les charges-sources modifient les propriétés de l'espace, ces propriétés étant décrites par un *champ* dit électrostatique, noté \vec{E} .

2°/ La charge d'épreuve subit <u>localement</u> des actions dues à ce champ. »

◊ ordres de grandeur du champ électrique

Atmosphère : dans l'atmosphère "normale" $\approx 100 \text{ V} \cdot \text{m}^{-1}$; par temps d'orage $\approx 10 \text{ à } 100 \text{ kV} \cdot \text{m}^{-1}$

Ligne électriques, champ en V·m⁻¹:

Tension	Sous les conducteurs	à <i>30</i> m	à 100 m
Très Haute Tension 400 kV	6000	2000	250
Moyenne Tension 20 kV	250	10	•••
Basse Tension 240 V	1,2		

Les champs électriques dus aux appareils domestiques dépassent rarement $500 \text{ V} \cdot \text{m}^{-1}$ à une distance d'utilisation habituelle. exemples : ampoule $5 \text{ V} \cdot \text{m}^{-1}$, aspirateur $50 \text{ V} \cdot \text{m}^{-1}$, réfrigérateur $120 \text{ V} \cdot \text{m}^{-1}$

Borne wifi : $< 6 \text{ V} \cdot \text{m}^{-1}$ à distance > 20 cm

Accélérateur de particules conventionnels $\rightarrow \approx 50 \text{ MV} \cdot \text{m}^{-1}$

Accélérateur laser-plasma (accélération de particules en utilisant l'interaction d'un laser avec la matière) $\rightarrow \approx 1 \text{ TV} \cdot \text{m}^{-1}$

♦ Théorème de Gauss : énoncé

 S_G étant une surface fermée, $\Phi(\vec{E}, S_G) = \frac{1}{\varepsilon_0} Q_{\text{int}}(S_G)$

Le flux électrostatique à travers une surface S_G fermée est égal au quotient de la charge contenue dans S_G par la permittivité diélectrique du vide.

♦ Théorème de Gauss : la méthode

On veut le champ \vec{E} en un point M quelconque.

- ① Faire un schéma, placer M, choisir le système de coordonnées approprié.
- ② Étude des symétries de $\vec{E} \rightarrow$ donner la direction d'une ligne de champ passant par M.
- ③ Étude des invariances de $\overline{E} \to \mathsf{d\acute{e}terminer}$ de quelles variables dépend \overline{E} .
- ④ Choix d'une surface de Gauss S_G (fermée, donc) contenant M → schéma.
- ⑤ Exprimer $\Phi(\vec{E}, S_g)$ en fonction de \vec{E} et des paramètres géométriques.
- **©** Exprimer $Q_{\text{int}}(S_G)$, en déduire $\frac{Q_{\text{int}}(S_G)}{\varepsilon_o}$. Appliquer le théorème de Gauss et en déduire \overline{E} puis \overline{E} .