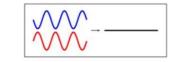
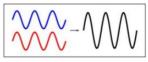

ATS

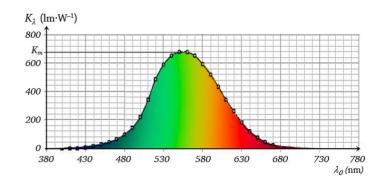

INTERFÉRENCES LUMINEUSES : SCHÉMAS

E7. OPTIQUE ONDULATOIRE - §1, 3, 4

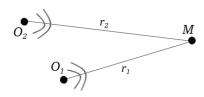

♦ expérience de Young (1801)


Les deux situations d'interférences extrêmes entre deux ondes

destructive $\Leftrightarrow \Delta \varphi = (2h+1)\pi$; $h \in \mathbb{Z}$

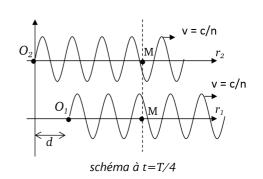


constructive $\Leftrightarrow \Delta \varphi = 2h\pi$



◊ sensibilité de l'œil

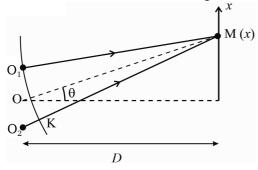
efficacité lumineuse spectrale K_λ en fonction de la longueur d'onde dans le vide λ_0

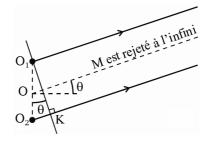


expressions d'un retard

 $s_1(M,t) = s_m \cos(\omega t)$ et

$$s_2(M,t) = s_m \cos(\omega t - k(r_2 - r_1)) = s_m \cos(\omega t - kd)$$
, avec $d = r_2 - r_1$

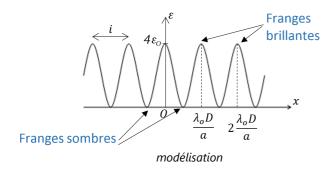

différence de marche : $\delta(M) = nd(M) = n(O_2M - O_1M)$

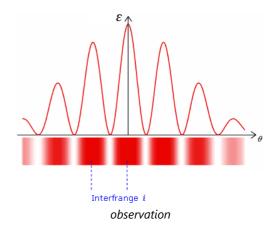

déphasage (retard de s_2 sur s_1): $\Delta \varphi = \frac{2\pi\delta}{\lambda_0}$

éclairement lumineux sur l'écran

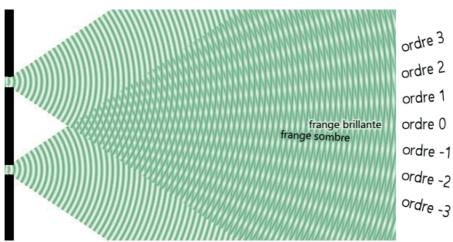
formule de Fresnel : $\varepsilon(M) = 2\varepsilon_O(1 + \cos \Delta \varphi)$

calcul de la différence de marche (méthode géométrique)





$$\delta(M) \approx \frac{ax}{D}$$


interfrange

$$i = \frac{\lambda_0 D}{a}$$

ordre d'interférence

$$p(M) = \frac{\delta(M)}{\lambda_0}$$