TP: OSCILLATIONS FORCÉES DANS UN CIRCUIT RLC

Objectifs : - Observer le comportement d'un circuit RLC série alimenté par une tension sinusoïdale.

- Mettre en évidence la résonance en tension aux bornes du condensateur.
- Souligner les analogies électromécaniques.

INTRODUCTION THÉORIQUE

1.1. Oscillations mécaniques, rappel

La solution permanente à des oscillations forcées de pulsation ω est une élongation de la forme :

$$x(t) = x_0 + X_m \cos(\omega t + \varphi)$$
 avec $x_0 = x_{eq}$ et $X_m = \left| \underline{X}_m \right|$, \underline{X}_m désignant l'amplitude complexe : $\underline{X}_m = \frac{\Gamma_m}{\omega_0^2 - \omega^2 + 2j\xi\omega_0\omega}$

On note ici $\Gamma_m = \frac{F_m}{m}$, F_m désignant l'amplitude de la force excitatrice.

Le phénomène de résonance d'amplitude peut s'observer si $\xi < \frac{1}{\sqrt{2}}$, la pulsation de résonance valant : $\omega_r = \omega_0 \sqrt{1 - 2\xi^2}$

Pour $\xi \ll 1$, $\omega_r \approx \omega_0$, on définit la largeur de bande $\Delta \omega = \omega_2 - \omega_1$ définie par : $\omega_1 < \omega < \omega_2 \Rightarrow X_m \geqslant \frac{X_{m,\text{max}}}{\sqrt{2}}$

On montre alors que $\frac{\Delta\omega}{\omega_0} = 2\xi = \frac{1}{Q}$

1.2. Analogies électromécaniques

grandeur mécanique	grandeur électrique
élongation <i>x</i>	charge q aux bornes du condensateur ($q = Cu_C$)
masse <i>m</i>	inductance propre L
coefficient de frottement λ	résistance <i>R</i>
raideur <i>k</i>	inverse de la capacité 1/C
vitesse <i>v</i>	intensité <i>i</i>
force d'amplitude F_m	tension d'amplitude $E_{\scriptscriptstyle m}$
période propre $T_0 = 2\pi \sqrt{\frac{m}{k}}$	période propre $T_0=2\pi\sqrt{LC}$

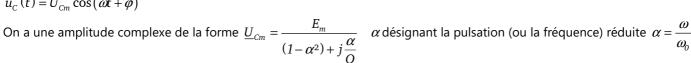
1.3. Dipôle RLC série

Le circuit RLC série considéré sera alimenté par une tension $e(t) = E_m \cos(\omega t)$ (voir schéma ci-contre).

 $E_m = E\sqrt{2}$ désigne l'amplitude alors que E désigne la valeur efficace.

Dans ces conditions, la tension mesurée aux bornes du condensateur vaut :

$$u_{C}(t) = U_{Cm} \cos(\omega t + \varphi)$$



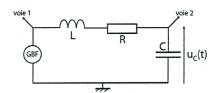
- Expliquer cette relation, uniquement à partir des résultats de mécanique et des analogies électromécaniques.
- Sachant que dans le cas des oscillations mécaniques d'un ressort on obtient $\xi = \frac{\lambda}{2\sqrt{mk}}$, retrouver l'expression du facteur de qualité du circuit RLC $\left(Q = \frac{L\omega_0}{R}\right)$ à partir des analogies électromécaniques.

e(t)

2. RÉSONANCE EN TENSION AUX BORNES DU CONDENSATEUR

2.1. Montage

L'inductance valant $100\,\mathrm{mH}$ (pastilles roses) ou $160\,\mathrm{mH}$ (pastilles oranges), fixer la valeur de la capacité du condensateur à $1.5\,\mathrm{nF}$. Vérifier au besoin la valeur de L avec le "LCR-mètre".



■ Régler le GBF pour qu'il délivre une tension sinusoïdale d'amplitude 2,0 V et de valeur moyenne nulle. △ Ne pas oublier d'appuyer sur OUTPUT.

 \triangle Lecture de fréquence : « . » = virgule, et « , » = séparateur de milliers.

• La résistance R prendra successivement deux valeurs : $R=1.0~\mathrm{k}\Omega$ et $R=33~\mathrm{k}\Omega$.

2.2. Tracé de U_{Cm} en fonction de la fréquence

a) lecture des tensions

- Sur l'oscilloscope, appuyer sur MEASURE et choisir d'afficher CH1 (V_{CC} ...) CH2...
- lacktriangle La courbe doit être entièrement dans l'écran pour que la mesure soit correcte.
- Vous pouvez également contrôler les tensions à l'aide du multimètre, Δ cependant aux limitations dues à sa BP.

b) mesures et tracés

- En utilisant la résistance de $1,0~\mathrm{k}\Omega$, mesurer les valeurs de U_{Cm} pour des fréquences variant de 1,0 kHz à 20,0 kHz. Veillez à ce que l'amplitude de la tension d'alimentation reste égale à $2,0~\mathrm{V}$ ($V_{\mathrm{CC}} = 4,0~\mathrm{V}$ crête à crête on réajustera si nécessaire).
- Recommencer l'opération avec la résistance de $R=33~{
 m k}\Omega$.
- Tracer les deux graphes des fonctions $U_{\it Cm}(f)$ à l'aide de LatisPro ou d'Excel. Faire varier la fréquence par pas de $1~\rm kHz$, sauf Δ au voisinage de la résonance (pas de $0.1~\rm kHz$)
- lacktriangle Dans chaque cas, y a-t-il résonance en tension ? Évaluer la valeur du facteur de qualité Q dans les deux situations et justifier l'existence ou non de la résonance.

c) étude de la résonance

Pour la courbe présentant une résonance en tension :

- Déterminer graphiquement la pulsation de résonance (la faire apparaître sur le graphique) et comparer avec la valeur théorique attendue. Commenter le résultat.
- Déterminer graphiquement la bande passante (la faire apparaître sur le graphique) et en déduire le facteur de qualité. Comparer avec la valeur théorique attendue.

Matériel (par poste):

- GBF (générateur basses fréquences)
- Voltmètre Metrix bleu (MX24B)
- Oscilloscope numérique
- Boîte de condensateurs variables, petite self de 100 ou 160 mH, boîte de résistances variables
- Connecteur coaxial en T
- Ordinateur + Excel